Skip to contents

Converts numeric matrix to data frame with necessary format for "manual" CPC() calculation.

Usage

CPCdata.frame(data, cols, clusters)

Arguments

data

a numeric n x k matrix or data frame.

cols

columns in data to be used for calculating CPC().

clusters

column in data giving cluster membership.

Value

Returns a data frame with dimensions identical to those of data.

Examples

data <- matrix(c(rnorm(50, 0, 1), rnorm(50, 5, 1)), ncol = 2, byrow = TRUE)
clusters <- matrix(c(rep(1, 25), rep(2, 25)), ncol = 1)
data <- cbind(data, clusters)
CPCdata.frame(data, 1:2, 3)
#>             V1          V2 cluster
#> 1  -0.48789948 -0.63922499       1
#> 2  -0.80279672  0.29105250       1
#> 3   0.10812589 -0.24085258       1
#> 4  -0.58349587 -1.99406923       1
#> 5   0.64266063  0.46982773       1
#> 6  -0.13158569 -1.01007015       1
#> 7  -1.18665411 -1.82702773       1
#> 8  -1.81740270 -0.92823009       1
#> 9  -0.13281472  0.37114234       1
#> 10  0.24658138  0.36469450       1
#> 11 -0.41681697 -0.45621893       1
#> 12  0.45719194  0.05346242       1
#> 13 -0.02601336 -0.39470408       1
#> 14 -0.40105961  0.36773807       1
#> 15 -0.79976935  0.64314954       1
#> 16 -1.72226339 -1.63401115       1
#> 17  1.21141514 -0.17180793       1
#> 18  0.70059174  1.09186556       1
#> 19 -0.23936348  0.29235286       1
#> 20  0.19283240  1.77818904       1
#> 21  0.37987042 -0.34473128       1
#> 22 -0.16465912  0.50824973       1
#> 23 -0.70092421  0.72921842       1
#> 24  0.52757687  0.29651154       1
#> 25 -0.08997147 -0.65179768       1
#> 26  4.24947155  5.60016708       2
#> 27  4.65942122  5.42423348       2
#> 28  3.57416952  6.09272660       2
#> 29  4.31759933  5.93619440       2
#> 30  4.01249583  5.94855753       2
#> 31  5.43574157  3.34223648       2
#> 32  5.21816668  4.18528342       2
#> 33  3.78183724  5.58651720       2
#> 34  4.24791902  1.91576376       2
#> 35  5.89833474  6.45890170       2
#> 36  4.58536435  3.81262547       2
#> 37  3.71594289  4.64144243       2
#> 38  5.45813562  5.64005111       2
#> 39  4.53698290  4.44726336       2
#> 40  3.29922762  2.68603494       2
#> 41  5.42280765  4.72300380       2
#> 42  6.95777099  4.46389521       2
#> 43  5.09487037  2.68471257       2
#> 44  4.75013340  5.58301679       2
#> 45  4.33029667  5.12550598       2
#> 46  4.53861245  7.04662506       2
#> 47  2.98897528  4.60623456       2
#> 48  4.99971351  4.36680498       2
#> 49  4.15981060  3.53256091       2
#> 50  5.22360088  6.19917075       2