Multi-Task Learning Improves Deep Argument Mining Performance
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Objectives

e Understand use of argumentation techniques and strategies in political speech and text.
* Develop automated tools for social scientists to analyze persuasive communication and political

Commonalities Across Tasks

Computational Efficiency

rhetoric.

 Assess the potential for multi-task learning to improve performance across tasks by recovering text

representations in common semantic space.

Data
Propaganda (Da San Martino et al. 2019) Task Training N  Balance
e News articles, binary sentence-level annotations Propaganda 61,909 63/37
of 18 propaganda types Disagree/Agree 66,684 21/79
Emotion/Fact 76,403 41/59
Internet Argument Corpus (Abbott et al. 2016) Attacking/Respectful 65.998 66/34
* Discussion forum posts, real-valued annotations Nasty/Nice 65,829 73/27
of 8 argument characteristics Personal/Audience 24,749 25/75
IBM-Rank-30k (Gretz et al. 2020 Defeater/Undercutter 24,357 38/62
an (Gretz et a ) Negotiate/Attack 26,604 44/56
* Crowd-sourced arguments, real-valued annota- Questioning/Asserting 29,791 66/34
tions of argument quality Argument Quality 96,036 6/94
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Figure 3: Computational Efficiency of Deep Learning Models. All models run on one NVIDIA A100
GPU for one epoch. Multi-task model sizes given in Table 3.

80%-10%-10% train-validate-test split

Table 1: Size and Class Balance of Training Data.

Application: r/ChangeMyView
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Figure 1: Network Architecture. Base encoder is fine-tuned. Max-pooling layer combines 18 propa-
ganda labels into single binary annotation. Regularization: 0.01 weight decay rate and 40% dropout at

each stage of network. Trained with AdamW optimizer (Loshchilov and Hutter 2017).

Double-Weighted Loss

Given predicted labels y and true labels y, the total loss L is:

L@ly) = vLllily, D),
k

where D;. denotes the set of observations corresponding to task-type k£, and v ~

weights. The loss for each task type k£ is:
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where [(.) is the binary cross-entropy loss function, 7} denotes the set of tasks within &, and C; is the

1
| Dy.|

—— are the task-type

corresponding set of classes. Class weights w; are proportional to the inverse of class enrichment.

A 80 B (“O o &
40 Poe > 0 5976 O cxelc> % % =
S ’ N O ggp OR G % 60 G435 APS :
SR 0P L - O o = '909§Gf 0 o® : Qo‘fo(} o
20 o ol 5 8080 Bud T '§ o 06 R BBy, B OO
O W ERIFIGTHEIR _of © B DgY 40 00 0L o s & )
oo oY SO |y O ¢ ° D 2 g A 0y« 5
0 G § f B0 1 0(9:“' 06 8 Doy Oak f S
o Y By ?"o 580 7 R 0 o OO & 20 2 S 2360 O3
BTG 88 e . SO0 o D@L FBR“ & B0es VP, ¢ 20 P o B 0
ol ‘® (e g & D002 @ i) ) G e, © A
—20 @ 0 B 5 B .20 g@tp % RO 5 o 23
-?,'.‘.,‘-_ b 6/‘:‘ @ Q"v@ & ‘5:@) O \WL\@ 0 s N G ¢ C '\':i\ (% ’ W &
= & o] 00 e ) 8 L fk@; 2= ’:«:O (O] ‘ D) O (()m £ 3 2 W7 Ne
—40 e e o §5 o8 & B < 2 o5 o B 5 TS
;(,‘Q ACSOU 3% e, —-20 7\/:@: P O i < ; 8’ &% oQ © §,§
7, \%O XD D 8 9\ . O Q > . Ié) & ‘é) X (‘; @g/,
- ' ; e o 8500 @ XL &" P D §
°0 & ‘ —40 > R ol - 3R s <)('.\)r"
3 82 O THBYE o @ '&Lo %
W3 S g& Quo Cefred Oy
—-80 e o, _ & &5 &0 FWao 0.8
S .9‘ ~O 60 ‘-,O ; \_‘p o/ \2,}"‘,» /\% x 1«:
(1) ()@Ol) @‘J\ ﬁ’ 4,20 O‘\f;
—100 -50 0 50 —100 -50 —25 0 25 50 75 100
C °
60
o
40
()
50 Q Q 5
20 0B 5 2 68 , ool A: Task-Specific Layers
0 P SEP ‘ o O
. 36" 3 PP OG0 B e T00 a8 6 @Y B: Shared Layer
e ¢ 05 = © 0 @
3 - 'y N x Y 1_‘&.‘ .
& e 0,00 0 5B, C: Base Encoder
5800 88 S % 0P o) © 22 0 0o
-20 5 Ra S 0 G0 Pt =P 800 RS g B Qx
C 'S O ’ ) o : .
Oc, ) Q 8F é% S8 (&) ® propaganda nasty _nice negotiate_attack
—40 () 9 !" > Q;,;Q % 0O O ) RO ® disagree_agree ® personal_audience questioning_asserting
P00 - @ “% 0 O%o ® attacking_respectful defeater_undercutter argument_quality
0 O'& s 8", U8 R ® emotion_fact
~60 ¥ O 5o GoRe
© S BB o
O ~ 088
O
—80 o
-80 -60 -40 -20 0 20 40 60

Figure 2: t-SNE projections of Text Representations from Intermediate Layers. Minor evidence of clus-
tering suggests model 1s learning representations that reflect similar semantic and logical structures across
tasks, without completely discarding task-specific structure. Similar amounts of clustering across plots
shows common structure 1s preserved as network proceeds from shared to task-specific layers.

Performance Evaluation

Task Baseline Unigrams Single-Task Multi-Task
Propaganda 55.47 38.46 63.07 61.74
Disagree/Agree 47.29 7.49 71.15 71.38
Emotion/Fact 45.80 21.91 68.11 63.93
Attacking/Respectful  56.47 51.16 67.46 68.07
Nasty/Nice 59.35 61.03 66.90 73.69
Personal/Audience 39.90 9.23 63.25 65.69
Defeater/Undercutter 534 45.21 45.97 55.65
Negotiate/Attack 36.93 55.31 64.76 64.81
Questioning/Asserting  50.57 57.47 59.61 63.23
Argument Quality 76.54 0.76 30.93 79.17

Table 2: Weighted F1 Scores. Baseline metrics are produced by random guessing and unigram metrics
by a naive Bayes classifier. Single-task and multi-task models use small BERT as base encoder.

Shared Trunk Multi-Task Multi-Task Multi-Task

Metric Baseline Unigrams Single-Task (Encoder) (17,024) (272,384) (438,784)
Precision 62.26 33.65 68.85 64.73 69.37 69.11 68.77
Recall 52.43 44.55 64.14 55.57 65.76 63.12 65.78
F1 52.17 34.80 65.12 56.70 66.73 64.46 66.33

Table 3: Comparison of Model Sizes. Baseline metrics are produced by random guessing and unigram
metrics by a naive Bayes classifier. Number of trainable parameters in parentheses, not including base
encoder. Single-task and multi-task models use small BERT as base encoder. Metrics class-weighted and
averaged across tasks.

Absolute Relative

Task Citation Metric Previous New  Gain Gain
Propaganda Da San Martino et al. (2019) Fl1 60.98 61.74 0.76 1.25
Disagree/Agree  Wang and Cardie (2014) Fl 63.57 71.38 7.81 12.29
Disagree/Agree Abbott et al. (2011) Acc. 68.20 70.73  2.53 3.71
Emotion/Fact Oraby et al. (2015) F1 46.20 63.93 17.73 38.38
Nasty/Nice Lukin and Walker (2013) F1 69.00 73.69 4.69 6.80

Table 4: Comparison to Previous State-of-the-Art Metrics.
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Figure 4: Effect of Select Argumentation Characteristics on Opinion Change in r/ChangeMyView.
Red horizontal lines denote baseline probability of a comment resulting in opinion change. Error bars

give 95% confidence intervals. All models are binomial logits fit with penalized maximum-likelihood
(Firth 1993).

Highlights
* Argument mining tasks—and likely other natural language tasks in the social sciences—share com-

mon semantic and logical structure.

e Double-branched multi-task networks with double-weighted loss exploit shared features to
drive performance across tasks.

e A multi-task approach provides improvement on previous state-of-the-art metrics of 1.25% to
38.38%.

e Multi-task networks enable significant gains in computational efficiency without sacrificing per-
formance.

e Network outputs correlate with opinion change in theoretically expected ways.



