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Abstract

Multilevel regression with poststratification (MRP) is by now the method of choice for es-

timating subnational quantities of interest. Scholars have proposed several methods of employ-

ing MRP on time series data, but there is limited understanding of which model specifications

are most reliable under different conditions. I evaluate the effectiveness of six dynamic MRP

models in estimating subnational public opinion over time. Evidence from twenty-nine policy

issues reveals substantial variation in model performance, indicating the importance of care-

ful model selection. Monte Carlo simulations using synthetic survey data show the accuracy

and efficiency of each model can vary with temporal volatility in state-level opinion, the num-

ber of observed time periods, and sample size. When an appropriate model is used, dynamic

MRP offers a promising method both for estimating subnational time series and for improving

estimates in a single time period. I conclude with recommendations for model selection.

*The University of Chicago; imehlhaff@uchicago.edu; word count: 9,484.
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Many phenomena of interest to political scientists, such as policy responsiveness or presidential

voting in the United States, occur at the subnational level. However, the public opinion surveys

scholars draw upon to understand them are most often designed to be representative of the national

population, with too few observations to recover reliable estimates in smaller geographic units

(Brace et al., 2002). Multilevel regression with poststratification (MRP) has quickly become the

gold-standard method to handle this type of small-area estimation (Park et al., 2004), and many

scholars have proposed further modifications to MRP to improve its performance (e.g. Bisbee,

2019; Goplerud, 2024).

At the same time, the proliferation of survey programs has endowed social scientists with an

extensive library of public opinion data. These programs frequently ask the same or similar survey

items in multiple years, but scholars rarely use this temporal structure to its fullest potential. In

many cases, they adopt a no-pooling approach to estimate separate parameters for each year (Enns

& Koch, 2013; Lewis & Jacobsmeier, 2017). This approach produces a time series, but at the

expense of making strong assumptions about the evolution of subnational opinion over time. In

other cases, researchers propose methods to more effectively leverage time-series information and

MRP’s partial-pooling benefits (e.g. Caughey & Warshaw, 2015; Franko, 2017; Pacheco, 2011).

Many such methods have been proposed, but scholars currently lack a systematic understanding of

which model specifications perform best, for what purposes, and under what circumstances.

I describe six possible approaches to constructing dynamic MRP models and test their ability

to recover accurate subnational opinion estimates over time. Analyses of twenty-nine policy issues

reveal high variation in model performance. All models produce accurate estimates on some issues

and inaccurate estimates on others. The often-wide chasm between the best- and worst-performing

models on a given issue should invite caution from applied researchers; without additional infor-

mation about a time series’ characteristics, it is difficult to prescribe ex ante a model to accurately

estimate that time series at a subnational level.

I use Monte Carlo simulations with synthetic survey data to probe three potential sources of

variation in model performance: the degree to which state-level opinion varies over time, the
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number of years in which each policy preference is observed, and sample size in the target time

period. I show that a no-pooling model is a poor option in many scenarios, while a model that uses

random intercepts to allow the effect of individual-level demographic characteristics to vary over

time offers a versatile solution.

More broadly, these analyses suggest that despite broad differences in performance observed

in applied settings, dynamic MRP holds promise as a statistical method. If an appropriate model is

selected for a given use case, it can provide scholars with reliable estimates of subnational opinion

estimates, even in years or units where data is scarce. Even if researchers do not require time series

data, they can still improve the accuracy and efficiency of their estimates in a single time period

by borrowing information from other time periods, provided that opinion does not exhibit wild

swings from one period to the next. As scholars continue to stress the necessity of incorporating

measurement error into downstream analyses (Knox et al., 2022; Tai et al., forthcoming), these

gains in efficiency may hold meaningful consequences for substantive inferences.

Estimating Subnational Opinion from National Data Sources

Subnational politics have long been critical for understanding key concepts in political science

(Giraudy et al., 2019). Key (1949) showed that states in the American South exhibited important

variation in their degree of political conservatism. Arceneaux (2001) argued that public attitudes

about gender roles were associated with female representation in state legislatures. More recently,

scholars have drilled to the subnational level to understand democratic backsliding (Giraudy, 2015;

Grumbach, 2022). Between 2004-2016, 28 percent of articles published in the American Political

Science Review used subnational entities as the unit of analysis (Sellers, 2019).

For many years, the most common method of recovering subnational opinion estimates from

national surveys was to simply disaggregate the sample into subnational units and calculate opinion

within each subgroup (Brace et al., 2002; Erikson et al., 1993). However, most national surveys

are too small to provide a sufficient number of observations for unbiased—let alone efficient—
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estimates in subnational units. To avoid the pitfalls of survey disaggregation, scholars now fre-

quently employ multilevel regression with poststratification (MRP; Buttice & Highton, 2013; Gel-

man & Little, 1997; Park et al., 2004).

MRP models of subnational public opinion use a two-stage procedure. In the first stage, sur-

vey responses are modeled hierarchically as a function of demographic and state-level variables.

Adopting notation from Gelman and Hill (2007), this first-stage model often takes a form like:

yi ∼ Bernoulli(πi),

πi = logit−1(β0 +α
gender
g[i] +α

race
g[i] +α

age
g[i] +α

educ
g[i] +α

state
g[i] ),

(1)

where yi is a binary survey response by respondent i and πi gives Pr(yi = 1) as a function of random

intercepts for the respondent’s gender, race, age, education, and state of residence.1 Subscripts

g[i] select the random intercept for group g to which respondent i belongs. State intercepts are

subsequently modeled as a function of state-level variables. These spatial smoothing variables are

important for controlling the degree of partial pooling in the first-stage estimates and correcting for

lack of representativity in cluster-sampled survey data (Buttice & Highton, 2013; Butz & Kehrberg,

2016). Here, I use the Republican share of the two-party vote in the most recent presidential

election:2

α
state
g ∼ N(γ ·presg[i], σ

2
state). (2)

Following Gao et al. (2021), each of the parameters in (1) and (2) take weakly informative priors:

1Scholars frequently refer to these parameters as “random effects.” To avoid confusion with other, similarly named
models, I use the “random intercepts” language recommended by Gelman and Hill (2007).

2Scholars often include additional state-level variables such as the percent of residents who are Evangelical Chris-
tians (e.g. Lewis & Jacobsmeier, 2017), and they frequently nest states within regions. These model features are
especially useful for providing performance gains over disaggregation. Since I am primarily concerned with perfor-
mance among MRP models, not between MRP and disaggregation, I opt for the comparatively simpler model.
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β0, γ ∼ N(0, 2),

α
j

g ∼ N(0, σ
2
j ) ∀ g, j ∈ {gender, race, age, educ},

σ
2
j ∼ N+(0, 1) ∀ j ∈ {gender, race, age, educ, state},

(3)

where the variances σ2
j are constant across groups and estimated from the data.

In the second stage, predictions from the first-stage model are calculated for each combination

of demographic predictors. A final estimate of state-level opinion is then produced by calculat-

ing a weighted average of these first-stage estimates, with the joint distribution of demographic

predictors in each state used as weights.3

Additional improvements to the MRP framework have further enhanced its performance. Lee-

mann and Wasserfallen (2017) provide a method to relax the requirement for joint distributions of

demographic predictors in the poststratification stage, Goplerud (2024) provides a fast algorithm

to estimate deep interactions in the first-stage model, and several authors test the ability of ma-

chine learning techniques to improve first-stage predictions (Bisbee, 2019; Broniecki et al., 2022;

Ornstein, 2020).

Subnational Opinion over Time

The rapid advancement in MRP techniques has largely taken place by emphasizing cross-sectional

estimation or, at the very least, by not allowing models to borrow information across time. With

important exceptions (e.g. Caughey & Warshaw, 2015; Kastellec, 2018), the prevailing objective

has been to recover a single point estimate for a subnational unit. The limited efforts to incorporate

time into subnational opinion estimation frameworks is especially curious given that social scien-

tists now have extensive access to nationally representative survey data across many years. Survey

3For more details on poststratification, see Leemann and Wasserfallen (2017), Park et al. (2004), and Warshaw
and Rodden (2012), among others.
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programs often capture opinion on the same topics over a long period of time, including attitudes

on specific policy domains (Caughey & Warshaw, 2018) or more general measures of ideology or

partisanship (Mehlhaff, forthcoming).

Some MRP researchers have already noted this opportunity. Lax and Phillips (2009a) measure

state-level support for gay rights by combining 41 polls fielded from 1999-2008. Their model

includes a random intercept for each poll, but they do not break down the results by year. On

one hand, this complete-pooling approach has the benefit of dramatically increasing the number of

observations available to the model,4 perhaps leading to more accurate estimates in small states and

more efficient estimates overall. On the other hand, it implicitly assumes that state-level opinion

is stable over the time period under consideration and, more specifically, that the relationships

between demographic predictors and attitudes are stable over time. In many cases, at least one of

these assumptions is unlikely to hold.

Ideally, MRP models of dynamic processes would incorporate time more explicitly. Doing

so could impart at least two benefits. First, preserving the temporal dimension in opinion can be

critical to answering causal questions (Blackwell, 2013). When research topics do not lend them-

selves to experimentation, leveraging temporal variation is often one of the few ways researchers

can draw causal inferences from aggregate-level observational data. Even where causal inference

is not appropriate, temporal variation can enhance external validity or help assess theoretical scope

conditions. Second, incorporating data from additional time periods can improve cross-sectional

MRP estimates in years or units where data is scarce. By borrowing information from other time

periods, MRP’s partial pooling benefits may enable the model to more accurately and efficiently

estimate cross-sectional opinion.

Two recent examples demonstrate the research questions that can be asked and answered with

dynamic MRP. Smith et al. (2020) create time-varying, state-level estimates of racial resentment.

Using descriptive analyses of how racial animus varies across states and how it changes within

4My focus in this paper is on using MRP for time series estimation. I therefore use “complete-,” “partial-,” and
“no-pooling” terminology to refer to how the model handles temporal information. All models use a partial pooling
structure for spatial and demographic variation.
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states over time, they challenge the narrative of racial progress and show that many states—even

outside the South—have increased in racial resentment since the 1980s. Claassen and Traunmüller

(2020) show how dynamic MRP can help scholars estimate population-level quantities like reli-

gious demographics that are rarely included in census questionnaires. They measure the popula-

tion of Muslims, Hindus, and Jews in the United Kingdom over two decades, both overall and in

detailed demographic subgroups. These two examples are also illustrative because the two author-

ship teams use quite different approaches to incorporating time into their MRP models; Smith et al.

(2020) use random intercepts by year, while Claassen and Traunmüller (2020) use several varia-

tions of what I will refer to below as a “linear trend” model. Which method is more appropriate?

Do different methods lead to different results?

When these and other authors implement dynamic MRP methods, they typically attempt to

validate their estimates in their specific use cases. However, these validity checks are largely

evaluations of covariate selection or interaction effects within one general model type. At present,

the literature provides little guidance on how well the models themselves perform, which ones

are appropriate for which objectives, and under what conditions dynamic MRP can be reliably

employed.

One notable exception is a manuscript by Gelman et al. (2018). They propose eighteen possible

models, varying the type of covariates included as well as the manner in which time is introduced

into the model. Testing these models on survey data capturing the support for same-sex marriage

from 1993-2004, they argue that dynamic MRP is particularly helpful for increasing the accuracy

of estimates in units where data is scarce. They specifically recommend using time as a continuous

smoothing variable and discourage year or demographic-year random intercepts. However, by an-

alyzing only one time series, they leave open questions as to how performance varies with factors

such as the degree of over-time variability in opinion or the number of time periods under consid-

eration. While I concur with Gelman et al.’s emphasis on sparse data situations, I push back on

their modeling recommendations. Evidence from survey and synthetic data below shows that mod-
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els with a time-smoothing parameter perform quite poorly, while models that allow demographic

random intercepts to vary over time frequently outperform other approaches.

Approaches to Dynamic MRP

There are many ostensibly reasonable model specifications for dynamic MRP, including combina-

tions of the candidate models I examine here. For simplicity, I focus on six distinct methods of

estimating subnational opinion over time; scholars using dynamic MRP in applied settings should

systematically evaluate whether adding more complexity on top of these foundational models im-

proves performance in their specific use case.

The simplest approach is a no-pooling model that estimates completely separate models by year

and allows no data sharing among them. This model is mathematically identical to the complete-

pooling model in equations (1) through (3), but it is fit once for each year, resulting in T total

models, each producing estimates for year t ∈ {1, ...,T}. This is a popular approach in applied

work using MRP to produce time series estimates (Butz & Kehrberg, 2016; Enns & Koch, 2013;

Lewis & Jacobsmeier, 2017). Its output no doubt adheres more closely to ground-truth opinion

trends, but it also prohibits the model from using any information from other years to estimate

opinion in the target year—all but eliminating the partial-pooling benefits of MRP and risking

imprecise estimates (Caughey & Warshaw, 2019)—and it makes arbitrary assumptions about the

degree to which opinion changes over time (Gelman et al., 2018). Particularly in states or years

with small sample sizes, there is likely room to improve performance by allowing the model to

borrow information across time periods.

The other five candidate models generally seek to leverage the partial-pooling benefits of MRP,

incorporating richer data than a no-pooling model can but shrinking yearly estimates to the ap-

propriate means when data is scarce or variation across years is negligible. Pacheco (2011, 2014)

offers one simple, albeit rather inflexible, method of achieving partial-pooling across time. She

pools data within three- and five-year intervals and estimates the model above on each moving
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window of data. In effect, this procedure is a no-pooling model with some manually imposed

amount of partial-pooling, determined not by the model but by the researcher. It may outperform a

pure no-pooling model by borrowing information across a small set of contiguous years, but pool-

ing outside each moving window is impossible, again ensuring that the model does not see most of

the available data. Moreover, this approach assumes—similar to complete-pooling—that opinion

does not change within each moving window.

A more adaptable strategy would be to incorporate time into the model itself. The model in (1)

can be adjusted to include a continuous time-smoothing variable:

πi = logit−1(β0 +α
gender
g[i] +α

race
g[i] +α

age
g[i] +α

educ
g[i] +α

state
g[i] +δ ·year),

δ ∼ N(0, 2).

(4)

All other terms are defined as in (2) and (3). Time-smoothing is a popular strategy in applied work

(Shirley & Gelman, 2015; Wiertz & Lim, 2021), but it has the disadvantage of assuming linear

time trends. Some authors have allowed for more flexibility by including a second-order polyno-

mial (Kastellec, 2018), by estimating separate slopes for each demographic category (Claassen &

Traunmüller, 2020), or by using splines to determine the functional form for time (Kołczynska et

al., 2024). The latter solution may especially hold promise in cases where opinion changes rapidly

from year to year.

A much simpler alternative to fitting splines would be to follow the same structure as the classic

MRP model in (1) and use random intercepts for each year, just as the model uses random intercepts

for demographic groups and states. This is also a common method of estimating dynamic MRP

models in applied research (Ben-Shalom et al., 2021; Simonovits & Bor, 2023; Smith et al., 2020).5

Adding random intercepts by year to the baseline model in (1) requires specifying two additional

priors:

5Merely including these random intercepts does not, by itself, make the output dynamic. Lax and Phillips (2009b)
and Warshaw and Rodden (2012) include random intercepts by year in their models but do not poststratify by year;
although the year of the survey is used to improve first-stage model fit, they do not use it to produce dynamic estimates.
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πi = logit−1(β0 +α
gender
g[i] +α

race
g[i] +α

age
g[i] +α

educ
g[i] +α

state
g[i] +α

year
t[i] ),

α
year
t ∼ N(0, σ

2
year) ∀ t,

σ
2
year ∼ N+(0, 1).

(5)

The key benefit of partial-pooling in this case comes from allowing the model to estimate σ2
year from

the data. A no-pooling model effectively assumes σ2
year → ∞, which is unlikely to be reasonable in

most dynamic applications.

One important limitation of a model with random intercepts by year is that the time component

is not allowed to interact with any other terms, requiring the assumption that the effect of each

demographic category on the dependent variable is constant over time (Ben-Shalom et al., 2021).

The model in (5) would therefore be hard-pressed to capture features like, for instance, an expand-

ing gender gap in political attitudes (Clark, 2017). This assumption can be relaxed by not using

separate random intercepts by year but rather by allowing the demographic effects to vary by year

in the form of demographic-year random intercepts:

πi = logit−1(β0 +α
gender
g[i] +α

race
g[i] +α

age
g[i] +α

educ
g[i] +α

state
g[i] +α

year
t[i]

+α
gender
g[i], t[i]+α

race
g[i], t[i]+α

age
g[i], t[i]+α

educ
g[i], t[i]+α

state
g[i], t[i]),

α
state
g, t ∼ N(γ ·presg[i], t[i], σ

2
state),

α
j

g, t ∼ N(0, σ
2
j ) ∀ g, t, j ∈ {gender, race, age, educ},

(6)

where subscripts g[i], t[i] select the demographic group and year, respectively, to which each

observation belongs. I retain the random intercepts from (5) to enable partial pooling for

both demographic and year estimates. β0 and γ are defined as in (3) and σ2
j ∀ j ∈

{gender, race, age, educ, state} are constant across groups and years and estimated from the data.
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This approach mirrors the practice of allowing state random intercepts to vary by year (Ben-Shalom

et al., 2021; Shirley & Gelman, 2015), but extends it to all demographic variables.

Fitting separate random intercepts for each demographic-year combination may help the model

capture large swings in opinion over time. But in some ways, it still relies on the same unrealistic

assumption that a no-pooling model does: that time is merely a collection of years, where opinion

can be measured independently in each year. In reality, opinion at time t depends on opinion at

time t − 1 but not on opinion at time t + 1. Therefore, it might be beneficial to impose a greater

degree of structure on the over-time changes in demographic-year intercepts.

Gao et al. (2021) show that directed structured priors on individual-level MRP parameters,

such as age, lead to bias and variance reduction in first-stage estimates. I adapt their approach

for dynamic applications, placing a local-level transition model on the year and demographic-year

random intercepts from (6):6

πi = logit−1(β0 +α
gender
g[i] +α

race
g[i] +α

age
g[i] +α

educ
g[i] +α

state
g[i] +α

year
t[i]

+α
gender
g[i], t[i]+α

race
g[i], t[i]+α

age
g[i], t[i]+α

educ
g[i], t[i]+α

state
g[i], t[i]),

α
year
t ∼ N(α

year
t−1 ,σ

2
year),

α
j

g, t ∼ N(α
j

g, t−1, σ
2
j ) ∀ g, t, j ∈ {gender, race, age, educ}.

(7)

All other terms are defined as above, including αstate
g, t , which does not take a dynamic model but

rather is identical to its implementation in (6). This approach models time-dependent parameters

with a random walk, making them a function of the parameter’s value in the previous time period

plus random noise. It has the effect of shrinking the posterior of, for example, α
year
t toward the

posterior of α
year
t−1 . This structured prior enables complete information-sharing among years, under

6See also Caughey and Warshaw (2015, 2018). Their dynamic group-level item response model effectively re-
duces to a dynamic MRP model in the special case when there is only one survey item.
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the assumption that individuals in each demographic cell have similar opinions to individuals with

the same demographics in previous years.

Finally, local-level transition models like this one must be anchored to some baseline value. I

do this by placing a prior on the first estimate in each time series:

α
j

g,1 ∼ N(0, 1) ∀ g, j ∈ {gender, race, age, educ}. (8)

I fit all models in a fully Bayesian framework, which enables me to produce uncertainty es-

timates as a direct byproduct of the model-fitting process. These are important for assessing the

efficiency of each modeling strategy relative to the others. I provide more details on estimation in

Supplementary Information (SI) section A.

Dynamic MRP on Twenty-Nine Policy Issues

Testing the performance of the six models in the previous section requires data from large national

surveys that consistently ask respondents the same items over multiple years. I use the Cooperative

Election Study (CES), which consistently asks a large, Census-benchmarked sample of Americans

for their views on policy issues. I take twenty-nine individual time series from these data, on issues

ranging from abortion and healthcare to immigration and military policy.7 The CES also provides

the four demographic variables I included in the models above, which I supplement with state-

level information about Republican vote share in the previous presidential election. This broad

collection of public opinion data enables me to test dynamic MRP models in a diverse set of time

series. If one model specification is systematically superior to the others, it should be evident in

this analysis.

Importantly, the CES is a very large national survey, with a mean sample size of 34,815 respon-

dents per year. This allows me to use disaggregated state-year averages, weighted to be representa-

7I limit my search to survey items included in at least four consecutive years and are either asked on a binary scale
(e.g. support or oppose) or on an ordinal scale that could be converted to binary without excluding a middle category.
SI section B.1 provides survey item details.
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tive of the population, as the benchmark (Buttice & Highton, 2013). Lax and Phillips (2009b) point

out that disaggregation and survey weights may both bias results against MRP. Because I am not

interested in comparing MRP to other methods but rather comparing across different approaches

to implementing MRP in a time series application, it primarily matters that I compare all candidate

models to the same baseline—how the baseline is constructed or whether poststratification should

be used in combination with survey weights matters relatively little in this case (see also Bisbee,

2019). Since survey weights tend to bring opinion estimates closer to the “ground truth,” I opt to

use them.8

I randomly sample ten percent of responses in each year to fit the MRP models and use data

from the United States Census to poststratify estimates (Ruggles et al., 2024). I assess model

performance by calculating the root mean squared error (RMSE) across all state-years within each

policy issue.9 Figure 1 displays these error metrics, with differently colored points representing

each model. Policy issues are ordered along the y-axis according to the RMSE of the no-pooling

model. The bolded y-axis label denotes the average model RMSE across all issues.

Three conclusions stand out from this analysis of twenty-nine time series. First, in line with

Buttice and Highton’s (2013) finding, model accuracy varies substantially across issues. Most

RMSE metrics cluster between five and seven percentage points, but estimates for some issues are

consistently accurate across all models while others are consistently poor. RMSE for all models

on using the military to spread democracy are around 0.04; error on the same-sex marriage issue

is more than double that, at 0.08 and above.

Second, no one model consistently outperforms the others. Models with random intercepts

by demographic-year have the lowest error when averaging over all issues, while the local-level

transition model is slightly more accurate than a no-pooling model. However, these averages belie

substantial variation. Every model claims the lowest RMSE on at least one issue. At the same

time, the model with demographic-year random intercepts is the only one that does not claim the

8In SI section B.2, I show that substantive conclusions differ little when using an unweighted baseline.
9SI section B.3 displays alternative performance metrics such as MSE, MAE, correlation, and standardized bias

(Buttice & Highton, 2013).
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Same−sex marriage
Ban assault rifles
Abortion access

Clean Air/Water Acts
Medicare for all

Affirmative action
Police question undocumented

Require renewable fuel
Regulate carbon

Border security
Concealed−carry

Employer covers abortion
Canada/Mexico tariffs

Average
Prohibit funding abortion

Destroy terrorist camp
Repeal ACA

Sanction undocumented hiring
Stop genocide

Legal status
Protect allies

Deport undocumented
Ensure oil supply

China tariffs
Help UN

Reveal gun owners
Raise fuel efficiency
Background checks

Police report undocumented
Spread democracy

0.04 0.06 0.08 0.10

Root mean squared error (RMSE)

Model
No pooling

Moving average

Linear trend

Year intercepts

Demographic−year intercepts

Local transition

Figure 1: RMSE of CES Time Series Estimates. Performance metrics reflect model estimates for
all state-years within each policy issue. Policy issues ordered on y-axis according to no-pooling
RMSE.

highest RMSE on at least one issue. Without additional knowledge on the factors that cause some

dynamic MRP models to perform better or worse, it is difficult to identify one model that is likely

to provide high-quality estimates.

Third, and perhaps most alarming, the gap between the best- and worst-performing models is

occasionally small but more often vast. Evidenced by the points scattered across the right half of

Figure 1, many models return error rates at least double the best-performing model on each issue.

Linear trend models are disproportionately represented among these low-accuracy outliers. The

clearest example is the issue of requiring automobile manufacturers to increase the fuel efficiency

of their cars. A no-pooling model exhibits RMSE of about 0.05 on this item, but the linear trend
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model’s RMSE is over 0.11. Choosing the wrong model for a particular application may lead to

inferences that are inaccurate, inefficient, or both.

Explaining Variation in Dynamic MRP Performance

The previous section showed wide variation in model performance across an equally wide-ranging

set of time series. Scholars have identified several sources of variation in MRP performance, such

as sample size (Lax & Phillips, 2009b), multi-level model complexity (Warshaw & Rodden, 2012),

or the importance of individual- and state-level covariates (Buttice & Highton, 2013). As this is a

dynamic application of MRP, I focus on three characteristics of the time series themselves that I

expect to contribute to model performance.

First, when opinion is highly volatile over time, models that conduct more temporal

smoothing—like those with linear trends or local-level transitions—may lose out to no-pooling

or moving average models. Notably, the policy issue in Figure 1 with the most accurate pre-

dictions overall—using the military to spread democracy—is also the most stable over time; the

standard deviation of states’ opinion on this policy across years is less than four percentage points

on average.

Second, the length of the time series may affect each model differently. No-pooling and moving

average models produce completely separate estimates for each year, but hierarchical models like

those with random intercepts rely on being able to borrow information across many time periods.

More complex models may require even more data to fit their larger inventory of parameters.

The “abortion access” issue, on which no-pooling performs markedly worse than the local-level

transition, has sixteen years of data. Other issues have as few as four.10

Finally, just as static MRP tends to perform better in larger states with larger sample sizes,

certain dynamic MRP models are likely sensitive to small sample sizes in some years. Although

the average CES sample is close to 35,000 observations, there is meaningful variation around that

10SI section B.4 provides the standard deviation of over-time opinion within states and the number of available
years of data.
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mean. In 2020, the CES conducted 61,000 interviews. In 2007, it conducted only 9,999. Some

dynamic models might perform worse when the time series includes 2007 than when it includes

2020. In the next section, I assess these eventualities by using Monte Carlo simulations that allow

me to systematically vary key aspects of the data-generating process.

Simulation Evidence

Most MRP advances are validated on data from large national surveys or state polls (Bisbee, 2019;

Warshaw & Rodden, 2012). This has the benefit of testing how models perform when data contains

the type of noise one would expect from real-world data-generating processes. However, Monte

Carlo simulations are particularly useful for testing complex models like MRP for at least two

reasons. First, the performance of MRP models depends on many different sources of variation. A

simulation approach gives me complete control over the data-generating process, allowing me to

hold constant sources of variation which I do not wish to test—such as the degree to which state-

level variables predict opinion—and randomize the sources of variation in which I am interested,

like the variation in state-level opinion over time.

Second, to establish a ground truth benchmark with real-world survey data, researchers must ei-

ther disaggregate the full sample into state-level means (Lax & Phillips, 2009b) or draw on separate

data sources such as state-level surveys or election returns (Park et al., 2004). Both are suboptimal.

Survey disaggregation—which I used in the previous section out of necessity—requires extremely

large samples and is the very method known to produce inefficient and often biased estimates.

State-level surveys are rare, meaning that not every state-year may be verifiable. Election returns

are not representative of the state population. By contrast, Monte Carlo simulations ensure that I

know the true value of opinion in each state-year.

I use synthetic survey data to evaluate the performance of each MRP model in three different

contexts. In each simulation, I calculate the RMSE as an overall error metric and I perform the
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bias-variance decomposition to assess accuracy and efficiency separately.11 This decomposition

can be important in model selection. Two models may have similar RMSE values even though

one produces precisely estimated, incorrect values while the other produces unbiased estimates

with very high uncertainty. When a bias-correction adjustment is feasible, scholars may prefer the

former. When model estimates are primarily used for descriptive purposes and not as variables in

downstream analyses, they may prefer the latter.

These simulation exercises produce three main takeaways. First, efficiency and accuracy of

subnational time series estimates varies across models and with the degree of over-time volatility

in state opinion. The popular no-pooling approach is never the best option and, when opinion is

more stable, is often the worst. Second, models with demographic-year random intercepts achieve

consistently high performance as the length of the time series increases, regardless of whether

state-level opinion is stable or volatile. No other model produces such consistent performance, and

some simpler models can get worse when they see more time periods. Third, the demographic-year

random intercepts model also offers a versatile method to recover accurate state-level estimates in

years where data is scarce. Other models require larger sample sizes and are only viable options

under conditions of strong temporal stability. In SI section C, I provide an analysis of computa-

tional efficiency and illustrate that although more accurate models do entail higher memory usage,

they do not always require more time to fit.

Generating Synthetic Survey Data

The simulated data consist of S = 10 states,12 each observed at T = 10 time periods. The total

population contains N = 10,000 survey respondents who are assigned to gender, race, age, and

education categories in proportion to the prevalence of those categories in United States Census

data. Respondents are divided equally among states and observed in each time period t ∈{1, ...,T}.

11RMSE(θ̂) =
√

Bias2(θ̂ ,θ)+Var(θ̂), deriving from the more common MSE(θ̂) = Bias2(θ̂ ,θ)+Var(θ̂) for an

estimator θ̂ . RMSE is measured in the same units as the predictions, so I present it instead of MSE to aid interpretation.
12States could also be understood as legislative districts or any other subnational geographic entity.
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The next step is to assign a state-level covariate. In keeping with the model specifications

above, I conceptualize this as the Republican share of the two-party vote: press, t ∼ Beta(20, 20).

The data therefore consists of 10,000 synthetic survey respondents in each time period, with demo-

graphic characteristics that match the United States in the aggregate. These respondents are nested

in 10 hypothetical states, each with a randomly assigned presidential vote share that changes each

time period.

The final piece of data I need to generate is the binary dependent variable y. Each observation

yi is an independent draw from a Bernoulli distribution, where the probability of selecting the

positive category, π , varies across states and time periods:

yi[s, t] ∼ Bernoulli(πs, t). (9)

In this context, πs, t also represents the true, population-level opinion in state s at time t—the

quantity I aim to estimate with each model. Buttice and Highton (2013) fix πs, t = 0.5 in their

simulations, but I seek to understand how model performance varies with the over-time volatility of

state-level opinion. I therefore allow πs, t to vary by randomly drawing πs, t from a beta distribution,

whose parameters are themselves randomly determined at each iteration:

πs, t ∼ Beta(ψ,ω),

ψ = ω ∼ U(0.1,100).

(10)

ψ and ω are constant across states and time periods. In each iteration, therefore, the simulation

draws a pair of beta parameters and uses them to generate a true value of opinion in each state and

time period. When ψ and ω are closer to 100, the beta distribution in (10) will be more tightly

centered around 0.5 and state-level opinion will be very stable over time. When ψ and ω are closer

to zero, the beta distribution will be more diffuse and opinion will vary dramatically from one time

period to the next.
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I conduct 300 iterations, each using the process above to generate synthetic population-level

data. Within each iteration, I randomly sample ten percent of the generated data, fit each model

on the sampled data, and calculate performance metrics, taking πs, t as the true value of opinion in

each state and time period.

Some features of the simulation are clearly not representative of most real-world data sources.

For example, I allocate respondents to states in equal proportions and I essentially ensure that co-

variates have negligible associations with the dependent variable. These decisions are driven by

my desire to isolate variation in temporal opinion trends and assess their effect on model perfor-

mance. Buttice and Highton (2013) construct their Monte Carlo simulations by explicitly imposing

a covariance structure between covariates and the dependent variable. However, I am neither in-

terested in how well each model can recover this covariance, nor in how variations in covariance

affect downstream model performance. Therefore, instead of arbitrarily choosing values for these

parameters, I opt to completely randomize them and hold them constant from one simulation to

the next.

Also noteworthy is my decision to avoid imposing over-time trends and instead allow opinion

to fluctuate randomly. This simulation therefore favors a no-pooling model at lower levels of ψ

and ω , as each state-year is essentially independent of the others in the data-generating process.

The no-pooling model’s comparative advantage diminishes somewhat at high levels of ψ and ω ,

at which point the simulation produces a linear, flat time trend. In these cases, more structured

models, such as the linear trend and local-level transition models, are more aligned with the data-

generating process. It is important to keep these structural advantages in mind when evaluating

model performance.

Estimating Time Trends in State-Level Opinion

I turn first to an analysis of each model’s ability to accurately recover the simulated time series as

a whole. This provides a general overview of model performance in the most common use case for

dynamic MRP. Figure 2 displays the bias, variance, and RMSE of each model’s estimates, plotted
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against the randomized values of ψ and ω from (10).13 Higher x-axis values therefore indicate

more stability in opinion trends over time. Lines are plotted using locally estimated scatterplot

smoothing (LOESS) and display 95 percent confidence intervals.

Bias Variance RMSE
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Value of ψ, ω (over−time opinion stability)

Model
No pooling

Moving average

Linear trend

Year intercepts

Demographic−year intercepts

Local transition

Figure 2: Bias, Variance, and RMSE of Time Series Estimates. Performance metrics reflect model
estimates for all states and time periods within each iteration. Higher values of ψ and ω indicate
more stability in opinion trends. Trend lines show 95% confidence intervals.

Calculating metrics across all state and time-periods, the models allowing demographic effects

to vary over time (demographic-year intercepts and local-level transition models) tend to perform

best, returning virtually unbiased estimates even in this finite-sample situation. Somewhat sur-

13Bias =E(θ̂)−θ for an estimator θ̂ . A trend line close to zero could therefore conceal variation across individual
states and time periods, as positive and negative biases would effectively cancel each other out when calculating the
line of best fit. Large confidence intervals on the trend line can help indicate when this is occurring. I omit the squared
bias, as it is very similar to RMSE.
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prisingly, the no-pooling model exhibits lower bias than moving average or linear trend models at

all levels of opinion volatility, though the linear trend model appears to improve slightly at lower

levels of volatility. As might be expected owing to the bias-variance tradeoff, the variance of the

estimates shows approximately the opposite pattern. The linear trend is by far the most error-prone

but introduces very little uncertainty, while the no-pooling model contains the greatest degree of

variation in its estimates. Most models get more efficient as opinion becomes more stable over

time, with the demographic-year intercepts model showing an especially precipitous decline in

variance.

The plot of RMSE combines the first two plots to provide a summary measure of performance.

In some respects, this simulation shows that volatility in over-time opinion carries implications for

model selection. Models employing moving averages, linear trends, or random intercepts by year

perform poorly when opinion varies substantially over time, with RMSE values nearly double that

of the best-performing model. These poor results cannot be completely explained away as artifacts

of the data-generating process; a moving-average model is most similar to a no-pooling model

while a linear trend model is highly structured, much like a local-level transition model. However,

the no-pooling and local-level transition models exhibit much lower RMSE when ψ,ω < 25. The

standard deviation of a distribution generated by this value of ψ and ω is about 0.071, still lower

than the over-time variation in a quarter of the CES opinion trends from the previous section.

At more stable levels of opinion, the performance of most models incorporating time converge,

and all outperform a no-pooling approach. This makes intuitive sense; when opinion swings wildly

from one time period to the next, dynamic models are mostly fitting to noise. In this case, the no-

pooling model’s arbitrary assumptions about the relationship between time periods is much less

consequential. But as opinion at time t becomes more tightly coupled to opinion at time t − 1,

allowing the model to learn from that relationship can bring noticeable gains.

21



Increasing Time Series Length

In addition to the degree of opinion volatility, model performance could also vary with the number

of time periods available. To assess this possibility, I focus specifically on each state’s opinion

at t1. I start by fitting each model with only this one time period of data and gradually add time

periods one by one until the full time series is included. I only calculate performance metrics on t1

because this allows me to hold the target values constant. If I added each subsequent time period

as T increased and calculated performance metrics over all states and time periods, as in Figure 2,

I would be unable to know whether changes in accuracy or efficiency were due to changing model

performance or changing composition of the test set. I fit these sets of models to simulated data

with low (ψ,ω = 1) and high (ψ,ω = 100) temporal stability.

Figure 3 displays how bias, variance, and RMSE change as the number of time periods seen

by the model increases. As in Figure 2, trend lines are plotted using LOESS and give 95 percent

confidence intervals. Estimates from no-pooling and moving average models do not change as the

number of time periods increases, so they appear as horizontal lines.14

There is little evidence of trends in bias, save for the very wide confidence intervals on moving

average, linear trend, and year-intercepts models under conditions of low opinion stability. This

suggests these models are producing inaccurate estimates with some observations’ estimates bi-

ased upward and others downward, averaging each other out in the aggregate. Increasing RMSE—

partially comprised of bias—for the latter two models corroborates this interpretation. Under con-

ditions of high opinion stability, scholars can decrease bias in models with demographic-year ran-

dom intercepts and local-level transitions by adding more time periods, but there is little marginal

gain after four or five periods.

The more instructive insights in this analysis come from the variance and RMSE plots. Overall,

the variance of each estimator decreases as the number of time periods increases. That is, as the

dynamic models see data from a broader time horizon, their estimates of state-level opinion at

t1 tend to become more efficient. This is especially true when opinion is highly stable—the less

14The no-pooling model is fit only on t1 and the moving average model is fit with the first three years of data.
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Figure 3: Model Performance at t1 as T Increases. Performance metrics reflect model estimates
for all states at t1 within each iteration. Trend lines show 95% confidence intervals.

opinion fluctuates, the more informative each additional time period is to estimating opinion in the

target time period. In fact, at high levels of stability, all dynamic models—plus the moving average

model—converge to approximately the same performance as T increases. When the number of

time periods is few, the local-level transition model is still by far the most error-prone, owing

both to its relatively inaccurate estimates and the high uncertainty with which they are calculated.

When opinion is highly volatile, the no-pooling, demographic-year random intercepts, and local-

level transition models all exhibit equally strong performance, while the moving average model is

uniquely poor.
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These results suggest three conclusions. First, the highly variable performance seen among

CES policy preferences may be partially explained by the variation in time series length, at least

for a couple models. Second, unless opinion fluctuates wildly over time, adding more time periods

may result in more efficient estimates with little, if any, loss of accuracy. Third, although it displays

higher variance in its estimates relative to several other models, the model with demographic-

year intercepts appears the most versatile, exhibiting low RMSE regardless of the level of opinion

stability or number of time periods included in the model.

Recovering State-Level Opinion with Scarce Data

Since one of MRP’s main benefits is helping correct for undesirable finite-sample properties, past

authors have frequently pointed to state population and sample sizes as important determinants

in model performance (Bisbee, 2019; Lax & Phillips, 2009b; Ornstein, 2020). In the dynamic

context, it is not only sample size across states that matters, but also across time periods.

To evaluate the sensitivity of dynamic MRP to sample size constraints, I again examine model

performance at t1. This time, however, I include all time periods in the model and vary the sample

size at t1, holding sample sizes at all other time periods t ∈ {2, ...,T} constant. As in the analysis

of increasing time series length, I again evaluate model performance in low- and high-stability

scenarios. This simulation allows me to assess how dynamic MRP performs when observations are

unevenly distributed among time periods, similar to analyses of small- and large-state performance

in static MRP; how robust dynamic MRP is to small samples; and whether researchers may be able

to leverage information from other time periods to improve inference in cases where data is scarce.

Figure 4 shows how performance metrics change as sample size increases. The x-axis depicts

the ratio of t1 sample size to the sample size at all other time periods, the latter of which is held

constant at 1,000 observations. The lowest end of the x-axis therefore reflects a sample size of only

100 total observations at t1 (ten per state, on average), while the upper end reflects a sample size

on par with all other time periods.
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Figure 4: Model Performance at t1 as Sample Size Increases. Performance metrics reflect model
estimates for all states at t1 within each iteration. Trend lines show 95% confidence intervals.

Results again show an interesting interaction between sample size and opinion stability. When

opinion changes rapidly over time, demographic-year random intercepts and local-level transition

models again show relatively high variance in their estimates, but this variance decreases as sample

size increases and is completely washed out in RMSE by high bias in other models’ estimates. At

high volatility, no-pooling performs nearly on par with these more complex models.

When opinion is very stable over time, however, a no-pooling model is decidedly suboptimal.

It returns highly biased and variable estimates when sample sizes are small. Both metrics improve

as sample size increases, but never match the performance gained from even the worst dynamic

model. Somewhat surprisingly, the local-level transition model also struggles to recover accurate
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estimates when sample sizes are low; combining this comparatively high bias with slightly higher

variance makes this model a notably worse option than other dynamic models. By contrast, the

linear trend model performs well in the high-stability scenario. Although its estimates are less

accurate than other models’, the precision with which they are estimated leads to favorable RMSE

metrics. This may be partially attributable to the data-generating process, as a more stable time

trend gives the model more structure on which to fit.

As in the analysis of increasing T in Figure 3, the model with demographic-year random inter-

cepts is the most versatile in this simulation. Though it has relatively high variance in low-stability

situations, this variance decays quickly at higher sample sizes, and its near-zero bias produces

excellent overall performance. Judging by the summary RMSE metric, this model can estimate

subnational opinion with little to no dropoff in performance. As shown in Figure 3, this perfor-

mance can be achieved with only a few additional time periods of data. Even if researchers are not

interested in temporal trends, they can nevertheless use data from other time periods to improve

cross-sectional opinion estimates in the time periods they do require.

Discussion and Recommendations

There are many seemingly reasonable approaches to incorporating time into subnational opinion

estimation frameworks. I investigated six such approaches here, but scholars should continue to

test whether adjustments to these general specifications can improve accuracy in each unique use

case. Evidence from public opinion on a wide range of policy issues suggests that no one model

is universally desirable; models perform well on some issues and poorly on others. When pos-

sible, applied researchers using dynamic MRP should consider testing several appropriate model

specifications and reporting the results of validation exercises.

In the common scenario where validation is not feasible, however, Monte Carlo simulations can

provide some valuable guidance on model selection. Much of the variability in model performance

exhibited in the CES data, I suggest, is attributable to characteristics of the time series themselves:
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over-time opinion volatility, time series length, and sample size. Particularly important for model

selection is these factors’ differential effects on bias and variance.

The no-pooling model, popular among applied researchers, exhibits the highest degree of un-

certainty in all scenarios. Its estimates are often more accurate than other models, but they are so

inefficiently estimated that the no-pooling model is rarely a good choice and frequently the worst

possible one. Especially if researchers wish to use these estimates in downstream analyses, where

the measurement error should be propagated through to correlation or effect estimates, they would

be better off employing a more complex model that can draw on information from multiple time

periods at once.15 The moving-average model is an equally simple, entry-level model that incor-

porates more information, but it often returns estimates with such bias that it should only be used

if the time series is known to be extremely volatile.

In Gelman et al.’s (2018) analyses of same-sex marriage opinion, they find models with linear

time trends frequently best the others. Across twenty-nine issues and several simulations, I repli-

cate this finding only for a small handful of issues and a couple simulated scenarios. The same is

true for a model with random intercepts by year. For example, when opinion is highly stable over

time, these models do indeed provide reasonable options that can often return accurate, highly ef-

ficient estimates. In fact, when opinion is highly stable and there are many time periods available,

scholars should consider using a model with random intercepts by year, as it provides low bias

without the higher variance exhibited by more complex models. However, performance is on a

knife’s edge; small increases in opinion fluctuation over time or decreases in the number of time

periods available to the model can lead to a precipitous decline in performance. For this reason,

researchers may wish to reach instead for a model that is more versatile, if slightly less efficient.

Linear trend and year-intercept models’ struggles suggest that what matters more than account-

ing for time trends in the outcome variable is accounting for time trends in the relationships of

demographic predictors to the outcome variable. Demographic-year intercept and local-level tran-

sition models achieve this, which may partially explain why they perform well in many different

15I focus on policy responsiveness to same-sex marriage opinion in SI section D, demonstrating that substantive
inferences can change based on the model selected.
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scenarios. Local-level transition models are clearly suboptimal when opinion is stable and there

are few time periods, but they are on par with or better than other options in most other situations.

Across all simulations, the demographic-year random intercepts model is clearly the most flex-

ible of the models tested. It does not always have the lowest bias or highest efficiency, but it is

never far from the model that does, and it is highly performant in an impressively wide range of

scenarios. Averaged across all CES issues, it returns the second-lowest RMSE, just behind models

with random intercepts by year. If scholars seek a model that is a safe bet no matter the application,

this one would be a defensible choice.

Most work using MRP applies the method to binary outcome variables—such as two-party

presidential vote or policy support (Enns & Koch, 2013; Kastellec, 2018; Kuriwaki et al., 2024)—

even if that requires recoding survey items originally asked with more than two response options.

Accordingly, I formulated all candidate models for binary outcome variables. But these models can

also be extended to other types of data structures. In SI section E, I replicate a study of state-level

racial resentment over time by Smith et al. (2020), where the outcome variable—an index derived

from the racial resentment survey battery—is continuous. Because MRP is based on a generalized

linear model, it can connect to nearly any data source that can be modeled with a distribution from

the exponential family.

Similarly, I focused on public opinion because it is the most common use case for MRP. But

MRP is part of a broader ecosystem of methods for small-area estimation, applied to diverse topics

such as urban planning, literacy, and agriculture (Kontokosta et al., 2018; Pfefferman et al., 2008;

Singh et al., 2002). Future work should assess the appropriateness of dynamic MRP for these re-

lated fields, relative to other statistical approaches for incorporating time into small-area estimation

(Rao & Yu, 1994; Singh et al., 2005).
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