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S1 Analysis of Existing Literature

This section details the procedures and results of a simple exercise to gauge the use of various polarization

measures in the political science literature. Journal articles were selected for the analysis if they satisfied

two criteria: 1) Their title or abstract included any word with the root “polar,” and 2) they were published

between 2000 and 2021.1 Polarization is an important concept throughout the social sciences but, for brevity

and consistency, I focus on eight high-impact journals in political science. Four of these are general interest

journals: American Political Science Review, American Journal of Political Science, The Journal of Politics,

and British Journal of Political Science. The other four are subfield journals, selected to cover a wide

range of subfields in which polarization is a prominent focus: Public Opinion Quarterly, Legislative Studies

Quarterly, Comparative Political Studies, and Political Analysis. Table S1 describes the procedures used to

obtain articles from each journal, including the database and search query used as well as any additional

filters that needed to be applied to the results. These searches yielded a total of 322 articles.

All types of scholarship—empirical, theoretical, and formal theoretical—were included, but the vast

majority included at least some quantitative empirical analysis. After obtaining these 322 articles, I read

each of them to determine how the authors operationalized polarization.2 In most cases, this information

was contained in the “Data and Measures” section, or another section titled similarly.3

Before presenting the results, a few words are in order with regard to coding rules. When possible, I

attempted to group similar operationalizations together. The “difference” category subsumed any opera-

tionalization measuring the distance between observations or group means, or extremity as distance from

a scale midpoint. Any operationalization measuring the sum of distances from an overall or group mean

or otherwise measuring the cohesion of a group was coded as “variance.” Both of these measures are often

adjusted, for example, with party vote shares. Many authors attempt to capture some sense of bimodality

with their measurement, with kurtosis and the Reynal-Querol index being popular choices; these are included

under “bimodality.” The finally category garnering an appreciable number of articles is that of “overlap;”

1This excludes articles published online in “First View” or other similar pre-publication releases. That is, articles needed
to be assigned an issue number to be included.

2All articles except for one specified this information in the main text. This article was coded as “unspecified.”
3Eighty-two articles engaged with polarization theoretically but did not include it in any empirical analysis. These articles

were coded as such and excluded from the calculations in Table S2.
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Journal Database Search Query Additional Filters N

APSR ProQuest
(ab(polariz*) AND PUBID(41041)) OR (ti(polariz*)

AND PUBID(41041))
Date from 2000-01-01 to

2021-12-31
42

AJPS JSTOR polar* in Item Title field OR polar* in Abstract field
Date from 2000 to 2021,

Journal is American Journal
of Political Science

54

JOP

EBSCOhost
Academic
Search
Premier

(TI(polar*) AND SO(”the journal of politics”)) OR
(AB(polar*) AND SO(”the journal of politics”))

Date from 01-2000 to
12-2021, Journal is Journal

of Politics
71

BJPS ProQuest
(ab(polariz*) AND PUBID(48551)) OR (ti(polariz*)

AND PUBID(48551))
Date from 2000-01-01 to

2021-12-31
41

POQ

EBSCOhost
Academic
Search
Premier

(TI(polar*) AND SO(”public opinion quarterly”))
OR (AB(polar*) AND SO(”public opinion

quarterly”))

Date from 01-2000 to
12-2021

39

LSQ
Wiley
Online
Library

polar* in Abstract field Date from 1-2000 to 12-2021 35

CPS
SAGE
Premier

polar* in Abstract field Date from 2000 to 2021 27

PA ProQuest
(ab(polariz*) AND PUBID(51675)) OR (ti(polariz*)

AND PUBID(51675))
Date from 2000-01-01 to

2021-12-31
13

Table S1: Bibliometric Search Procedures

there are several measures purporting to measure the degree to which two distributions (generally displayed

as kernel density plots) overlap, and these are all subsumed under this category. Other categories contain, at

most, a few articles and are generally self-explanatory. As articles often employ multiple operationalizations,

I allow articles to be coded with more than one measure when appropriate. Proportions therefore may not

sum to 1.

Table S2 displays the proportion of articles in each journal and overall that use each measure of polar-

ization. Three patterns in the results characterize the state of polarization measurement in the political

science literature. First, there is wide variability in how scholars attempt to tap into polarization—this

simple analysis reveals no less than twenty distinct measurement strategies. In one sense, then, there is little

consistency in measurement. In contrast, two measures—difference and variance—are substantially more

common than all others, appearing in 56.5% and 13.7% of all articles, respectively. In this sense, then, there

is great consistency in measurement. However, the reliability of past findings may be called into question

if these two measures do not adequately capture polarization, as I argue in the main text. Finally, there is

some variation among subfields. In contrast to work in American politics, comparative scholarship tends to

rely less on measures of difference and more on measures of variance, likely because the former complicates

measurement in multi-party systems—a benefit to using the CPC that I show in the main text.
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APSR AJPS JOP BJPS POQ LSQ CPS PA Overall
Difference 0.548 0.63 0.62 0.512 0.538 0.629 0.333 0.615 0.565
Variance 0.19 0.13 0.099 0.195 0.077 0.057 0.259 0.154 0.137

Bimodality 0.048 0.037 0.014 0.049 0.026 0 0.074 0 0.031
Overlap 0 0.056 0 0.049 0.051 0.029 0 0.154 0.031

Correlation 0 0.037 0.014 0.098 0.026 0 0.037 0 0.028
Social Distance 0.071 0.019 0 0.024 0.077 0 0 0 0.025

Regression Coefficient 0 0 0.014 0.024 0.051 0.029 0 0 0.016
Proportion Extreme 0.024 0 0 0.024 0 0 0.074 0.077 0.016

Time 0 0 0 0.024 0 0.057 0 0 0.009
Party Unity 0 0.019 0 0 0 0.029 0 0 0.006
Party Votes 0 0 0.014 0 0 0 0.037 0 0.006

Divided Government 0 0 0 0.024 0 0 0.037 0 0.006
Coalition Size 0 0 0 0.024 0 0 0.037 0 0.006
Importance 0 0.019 0 0 0 0 0 0 0.003
R-Squared 0 0.019 0 0 0 0 0 0 0.003

Seat Proportion 0 0 0.014 0 0 0 0 0 0.003
Same-Party Clerk 0 0 0.014 0 0 0 0 0 0.003
Network Separation 0 0 0 0.024 0 0 0 0 0.003
Outparty Opinion 0 0 0 0 0.026 0 0 0 0.003

Engagement 0 0 0 0 0 0 0 0.077 0.003
Unspecified 0 0 0 0 0 0.029 0 0 0.003

Table S2: Proportion of Articles Using Polarization Measures

S2 Derivation and Properties of the Measure

S2.1 Derivation

To derive the CPC, I begin by decomposing the total variance of clustered data (TSS) in (S1) into

components directly corresponding to the two features of polarization: the variance accounted for between

the clusters (BSS, corresponding to intergroup heterogeneity) and the variance accounted for within all

clusters (WSS, corresponding to intragroup homogeneity). Dividing by TSS and solving for the BSS term

gives an expression for the proportion of the total variance accounted for by the between-cluster variance—

what I call the cluster-polarization coefficient (CPC):

TSS = BSS +WSS,

→ CPC = 1− WSS

TSS
=

BSS

TSS
.

(S1)
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More formally, I compute three terms in (S2): the total sum of squares TSS, the between-cluster sum of

squares BSS, and the total within-cluster sum of squares WSS, where each individual i in cluster k holds

a position on dimension j:

TSS =

ni∑
i=1

nj∑
j=1

(xij − µj)
2,

BSS =

nk∑
k=1

nj∑
j=1

(µkj − µj)
2,

WSS =

nk∑
k=1

ni∑
i=1

nj∑
j=1

(xikj − µkj)
2.

(S2)

Mirroring (S1), I arrive at formal expressions of the variance of clustered data and of the CPC in (S3).

Expressed in this way, the CPC appears related—though not identical—to a one-way ANOVA F -statistic

and the coefficient of determination (R2).

TSS = BSS +WSS,

→
ni∑
i=1

nj∑
j=1

(xij − µj)
2 =

nk∑
k=1

nj∑
j=1

(µkj − µj)
2 +

nk∑
k=1

ni∑
i=1

nj∑
j=1

(xikj − µkj)
2,

→ CPC = 1−
∑nk

k=1

∑ni

i=1

∑nj

j=1(xikj − µkj)
2∑ni

i=1

∑nj

j=1(xij − µj)2
,

=

∑nk

k=1

∑nj

j=1(µkj − µj)
2∑ni

i=1

∑nj

j=1(xij − µj)2
,

∀ i ∈ (1, ..., ni), j ∈ (1, ..., nj), k ∈ (1, ..., nk).

(S3)

The CPC thus possesses two desirable properties: It is naturally bounded on the interval [0, 1] and it

takes into account both features of polarization. The CPC increases when the distance between groups

increases or when groups become more tightly concentrated around their collective ideal point, but the rate

of those increases depends on the relative levels of BSS and WSS.

As I show in section S2.3, however, this measure will be biased upward in small samples. To make

the CPC more generalizable to contexts with varying numbers of observations, variables, and clusters, I
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incorporate corrections for lost degrees of freedom into the key variance expressions in (S4) and derive the

adjusted CPC in (S5):

TSSadj =

∑ni

i=1

∑nj

j=1(xij − µj)
2

ni − nj
,

WSSadj =

∑nk

k=1

∑ni

i=1

∑nj

j=1(xikj − µkj)
2

ni − njnk
.

(S4)

CPCadj = 1− WSSadj

TSSadj
,

→ CPCadj = 1−

∑nk
k=1

∑ni
i=1

∑nj
j=1(xikj−µkj)

2

ni−njnk∑ni
i=1

∑nj
j=1(xij−µj)2

ni−nj

,

= 1−
∑nk

k=1

∑ni

i=1

∑nj

j=1(xikj − µkj)
2∑ni

i=1

∑nj

j=1(xij − µj)2
ni − nj

ni − njnk
,

= 1− (1− CPC)
ni − nj

ni − njnk
,

∀ i ∈ (1, ..., ni), j ∈ (1, ..., nj), k ∈ (1, ..., nk).

(S5)

S2.2 Distribution

Because the CPC is effectively a ratio of two variances, an F statistic can be calculated:4

4This set-up and the proofs which follow are similar to the derivation of a sampling distribution for R2 (Magee 1990).
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F =

BSS
njnk−nj

WSS
ni−njnk

,

=
ni − njnk

njnk − nj

TSS −WSS

WSS
,

=
ni − njnk

njnk − nj

TSS

TSS

TSS −WSS

WSS
,

=
ni − njnk

njnk − nj

1− WSS
TSS

WSS
TSS

,

=
ni − njnk

njnk − nj

1− WSS
TSS

1− (1− WSS
TSS )

,

=
ni − njnk

njnk − nj

CPC

1− CPC
.

(S6)

where ni, nj , and nk denote the number of observations, dimensions, and clusters, respectively; and BSS ∼

χ2(njnk − nj) and WSS ∼ χ2(ni − njnk) under the null hypothesis that BSS −WSS = 0. F is therefore

distributed as a central F (njnk − nj , ni − njnk) random variable. Solving for the CPC term from (S6)

produces:

F =
ni − njnk

njnk − nj

CPC

1− CPC
,

→ (njnk − nj)F − (njnk − nj)(CPC)F = (ni − njnk)CPC,

→ (njnk − nj)F = [(ni − njnk) + (njnk − nj)F ]CPC,

→ CPC =
(njnk − nj)F

(ni − njnk) + (njnk − nj)F
,

(S7)

implying that CPC ∼ Beta(
njnk−nj

2 ,
ni−njnk

2 ) under the null—a sensible result given that the CPC and the

Beta distribution both have continuous support on the [0, 1] interval.

S2.3 Unbiasedness

From this distribution, it is straightforward to recover the mean:
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E(CPC) =
njnk−nj

2
njnk−nj

2 +
ni−njnk

2

,

=
njnk − nj

ni − nj
.

(S8)

The unadjusted CPC is therefore asymptotically unbiased, again under the null hypothesis that BSS −

WSS = 0, as limni→∞ E(CPC) = 0. Taking advantage of the expression in (S8), we can show that the

adjusted CPC is an unbiased estimator under the null:

E(CPCadj) = E[1− (1− CPC)
ni − nj

ni − njnk
],

= 1− E[(1− CPC)
ni − nj

ni − njnk
],

= 1− [E(1− CPC)]
ni − nj

ni − njnk
,

= 1− [1− E(CPC)]
ni − nj

ni − njnk
,

= 1− (1− njnk − nj

ni − nj
)

ni − nj

ni − njnk
,

= 1− (
ni − nj

ni − nj
− njnk − nj

ni − nj
)

ni − nj

ni − njnk
,

= 1− (
ni − njnk

ni − nj
)

ni − nj

ni − njnk
,

= 1− 1,

= 0.

(S9)

S2.4 Consistency

The variance of the CPC can also be recovered from its sampling distribution:
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Var(CPC) =
njnk−nj

2
ni−njnk

2

(
njnk−nj

2 +
ni−njnk

2 )2(
njnk−nj

2 +
ni−njnk

2 + 1)
,

=
2(njnk − nj)(ni − njnk)

(ni − nj)2(ni − nj + 1)
,

(S10)

The unadjusted CPC is therefore consistent under the null, as limni→∞ Var(CPC) = 0. Taking advantage

of (S10), we can also derive the variance of the adjusted CPC:

Var(CPCadj) = Var[1− (1− CPC)
ni − nj

ni − njnk
],

= Var[(1− CPC)
ni − nj

ni − njnk
],

= (
ni − nj

ni − njnk
)2Var(1− CPC),

= (
ni − nj

ni − njnk
)2Var(CPC),

= (
ni − nj

ni − njnk
)2
2(njnk − nj)(ni − njnk)

(ni − nj)2(ni − nj + 1)
,

=
2(njnk − nj)

(ni − njnk)(ni − nj + 1)
.

(S11)

The adjusted CPC is therefore consistent under the null, as limni→∞ Var(CPCadj) = 0.

S2.5 Additional Properties

Finally, I derive expressions for the median and mode of the sampling distribution. The median is

presented in (S12), where Ix gives the regularized incomplete Beta function:5

5The solution given in (S12) is approximate—the median of the Beta distribution has no closed-form expression for arbitrary
parameters.
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median(CPC) = I−1
1
2

(
njnk − nj

2
,
ni − njnk

2
),

≈
njnk−nj

2 − 1
3

njnk−nj

2 +
ni−njnk

2 − 2
3

,

≈ 3(njnk − nj)− 2

3(ni − nj)− 4
.

(S12)

The mode of the sampling distribution can be expressed as:

mode(CPC) =
njnk−nj

2 − 1
njnk−nj

2 +
ni−njnk

2 − 2
,

=
njnk − nj − 2

ni − nj − 4
,

(S13)

implying that the distribution possesses a unique and finite mode when ni − nj > 4 and njnk − nj ≥ 2.

S3 Simulation Evidence

S3.1 Plots of Results with Three and Four Components

This section presents additional plots of simulation results, analogous to main text Figures 3 and 4, for

the cases of three and four components.
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Figure S1: Univariate Polarization Estimates with Three Components Results from univariate simulations
of polarization measures with three components, showing estimated level of polarization for a randomly
varying distribution parameter, holding the other parameter constant. All measures scaled to [0, 1] to enable
comparison and plotted using LOESS.
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Figure S2: Bivariate Polarization Estimates with Three Components. Results from bivariate simulations
of polarization measures with three components, showing estimated level of polarization for a randomly
varying distribution parameter, holding the other parameter constant. All measures scaled to [0, 1] to enable
comparison and plotted using LOESS.
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Figure S3: Univariate Polarization Estimates with Four Components. Results from univariate simulations
of polarization measures with four components, showing estimated level of polarization for a randomly
varying distribution parameter, holding the other parameter constant. All measures scaled to [0, 1] to enable
comparison and plotted using LOESS.
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(a) Random µ (intergroup heterogeneity) (b) Random σ (intragroup homogeneity)

Figure S4: Bivariate Polarization Estimates with Four Components. Results from univariate simulations
of polarization measures with four components, showing estimated level of polarization for a randomly
varying distribution parameter, holding the other parameter constant. All measures scaled to [0, 1] to enable
comparison and plotted using LOESS.

S3.2 Results with Log-Normal Data

Constructing the CPC using sums of squares imposes an important limitation: It is sensitive to extreme

outliers. Consider how this measure would respond to adding observations far out in the tails of a distribution.

S12



Supplementary Information A Group-Based Approach to Measuring Polarization

Such observations would lead to rapid increases inWSS, likely overwhelming any increase in BSS that would

result from small changes to the group’s centroid. As a consequence, the CPC will rapidly decrease and

remain relatively insensitive to any further changes in either variable, for the same discussed in the main

text. To demonstrate this limitation, I followed a simulation procedure similar to the one in the main text.

Simulations to evaluate polarization measures on the intergroup heterogeneity feature follow the procedure

below:

1. Fix component standard deviations at a range of values σ ∈ {e0.25, e0.5, e0.75}. For identification, I use

the same σ for each component.

2. For each component standard deviation σ, select 500 values of µ as independent draws from U(e, e3).

3. Take 500 independent draws from logN(µ, σ).

4. Reflect each data point over the y-axis to obtain a bimodal distribution with heavy tails on left and

right.

5. Apply each polarization measure to the resulting distribution.

The result of this procedure is 1,000 heavy-tailed distributions, each with N = 1000. Simulations to evaluate

polarization measures on the intragroup homogeneity feature follow the procedure below:

1. Fix component means at a range of values µ ∈ {e, e2, e3}. For identification, I use the same absolute

value of µ for each component.

2. For each component mean µ, select 500 values of σ as independent draws from U(e0.25, e0.75).

3. Take 500 independent draws from logN(µ, σ).

4. Reflect each data point over the y-axis to obtain a bimodal distribution with heavy tails on left and

right.

5. Apply each polarization measure to the resulting distribution.

The result of this procedure is 1,000 heavy-tailed distributions, each with N = 1000. Figure S5 displays the

results. As postulated, the CPC remains sensitive to component standard deviations (seen in plot (b)), but

the rapid increase in WSS as a result of the heavy-tailed data overwhelms an increase in BSS and makes

the measure insensitive to component means (seen in plot (a)). The performance of the other measures

is similarly mixed. Difference and variance perform closer to expectations on the intergroup heterogeneity
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(a) Varying µ (intergroup heterogeneity) (b) Varying σ (intragroup homogeneity)

Figure S5: Polarization Estimates with Log-Normal Data. Results from univariate simulations of polarization
measures with two components, showing estimated level of polarization for a randomly varying distribution
parameter, holding the other parameter constant. All measures scaled to [0, 1] to enable comparison and
plotted using LOESS.

feature (plot a), but both extant measures move in the wrong direction in response to varying standard

deviations (plot b).

These problems can be partially ameliorated, however, by taking the natural log of the data (between

steps 3 and 4 of the simulation procedures). While this transformation maintains the heavy-tailed nature

of the simulated distribution, it maps it to an interval that decreases the absolute value of the outlier

observations and makes it more manageable for the sums of squares used to calculate the CPC. Figure S6

displays the results of applying each measure to the transformed data. The CPC displays behavior much

more in line with expectations on both features, and the other measures generally improve as well, although

they all still struggle to capture the intragroup homogeneity feature (plot (b)). This underscores the need

for analysts to be aware of the distribution of their data. Although distributions of real-world data may

not often display heavy-tailed behavior to the extent that this simulated data does, the measure can still be

vulnerable to extreme outliers. Researchers should apply appropriate transformations to their data before

estimating polarization, just as they would before fitting a linear model or conducting other analyses.
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Figure S6: Polarization Estimates with Transformed Log-Normal Data. Results from univariate simulations
of polarization measures with two components, showing estimated level of polarization for a randomly varying
distribution parameter, holding the other parameter constant and transforming the log-normal data using
the natural log. All measures scaled to [0, 1] to enable comparison and plotted using LOESS.

S3.3 Results with Unequal Component Weights

I noted in the main text that I maintain equal component weights in the simulations to aid in identifi-

cation. This could raise concerns that results are at least partially dependent on an assumption that may

not be reasonable in many real-world applications. To evaluate the effects of this constraint, I use a similar

simulation framework as in the main text, but hold µ and σ constant and instead randomize cluster weights.

Simulations to evaluate polarization measures on the intergroup heterogeneity feature follow the procedure

below:

1. Fix component means at (−3, 3), a middling level of polarization in this simulation framework.

2. Fix component standard deviations at a range of values σ ∈ {0.5, 1, 1.5, 2}. For identification, I use

the same σ for each component and maintain a global mean of zero.

3. For each component, draw a set of component weights ϕK as independent draws from U(0, 1), such

that
∑2

k=1 ϕk = 1.

4. Take 1,000 independent draws from a Gaussian mixture parameterized by N(ϕ1,−µ, σ;ϕ2, µ, σ).

5. Apply each polarization measure to the resulting distribution.

The result of this procedure is 1,000 distributions, each with N = 1000. Simulations to evaluate polarization

measures on the intragroup homogeneity feature follow the procedure below:
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1. Fix component standard deviations at 1, a middling level of polarization in this simulation framework.

2. Fix component means at a range of values µ ∈ {2, 3, 4, 5}. For identification, I use the same absolute

value of µ for each component and maintain a global mean of zero.

3. For each component, draw a set of component weights ϕK as independent draws from U(0, 1), such

that
∑2

k=1 ϕk = 1.

4. Take 1,000 independent draws from a Gaussian mixture parameterized by N(ϕ1,−µ, σ;ϕ2, µ, σ).

5. Apply each polarization measure to the resulting distribution.

The result of this procedure is 1,000 distributions, each with N = 1000.

For each set of simulations, I then plot estimated polarization as a function of the difference between the

two component weights. As in all other simulations, I calculate the CPC using the true cluster memberships,

which are known from the data randomization procedure. Figure S7 displays the results. As expected, the

adjusted CPC is relatively invariant to the difference in component weights except when that difference is

high, at which point the mixture distribution approaches unimodality and the CPC decreases precipitously.
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Figure S7: Univariate Polarization Estimates with Two Components. Results from univariate simulations
of polarization measures with two components, showing estimated level of polarization for randomly varying
component weights, holding distribution parameters constant. All measures scaled to [0, 1] to enable com-
parison and plotted using LOESS.
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S4 Benchmarking Against Human Coders

The simulation evidence presented in the previous section is helpful for ensuring the CPC responds

in theoretically appropriate ways to changes in distributional features. However, the lack of ground-truth

polarization labels makes it difficult to judge whether the CPC is a more accurate measure of polarization

compared to others. Recovering a ranking of distributions based on randomized distribution parameters

comes close to solving that problem, but in these simulations, only one feature can be manipulated at a

time. In real-world data, both features vary simultaneously, often independent of each other. I therefore use

human coders to gather ground-truth annotations of distributions’ level of polarization, against which I can

benchmark each measure’s performance.

I first generated fifty bimodal distributions using the same parameters as in section S4.1, randomly

varying both component means and standard deviations at the same time. To make the task more accessible

to non-experts, I colored one component blue and one component red and referred to them as graphs of

Democratic and Republican ideology. The full task preamble and sample graphs can be seen in Figure S8.

Figure S8: Preamble and Sample Graphs of Polarization Labeling Task

After the preamble, coders answered three screening questions to ensure they understood the task. These

screening questions were identical to those they saw in the main task, but I chose the graphs presented in the
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screening questions such that one was obviously more polarized than the other. Coders were only allowed

to complete the main task if they answered all three screening questions correctly. I explicitly told coders

that polarization involved both features and tested them on that knowledge with easy screening questions

for two reasons. First, I wanted to make sure coders understood the task. Second, I was not concerned with

how the coders themselves thought about polarization, only that they could evaluate polarization according

to the two-feature definition while both features varied across distributions—something I could not achieve

in the simulations. For those coders who passed the screening questions, I randomly selected twenty pairs of

plots, presented them to the coders, and asked them: “Which of the two graphs below is more polarized?”

The result of each coder’s task was therefore twenty random pairwise comparisons labeled according to

which of the two options was more polarized. 495 workers on Amazon’s Mechanical Turk completed the

task.6 From the pairwise comparisons, a log-linear Bradley-Terry model recovered a ranking of distributions

according to their level of polarization (Bradley and Terry 1952). I then applied each measure of polarization

to all distributions and again ranked them according to the level of estimated polarization. The outcome

of this exercise, then, is four rankings of fifty distributions: one set of rankings uncovered by measures of

difference, variance, and the CPC, and one set of rankings recovered from human coding to be treated as

ground-truth information.

Difference Variance CPC

RMSE 18.17 20.381 4.441
MAE 14.88 16.88 3.52

Table S3: Benchmark of Polarization Measurements Against Rankings Recovered from Human Coders. Root
mean squared error and mean absolute error; bolded values denote measure with lowest error.

Table S3 describes the extent to which each polarization measure departs from the human-coded ground-

truth ranking. On both root mean squared error (RMSE) and mean absolute error (MAE), the CPC gives

a more accurate approximation of the human-coded ranking, with error metrics less than one third the size

of difference, the next most accurate measure. The magnitude of the difference and variance measures’ error

is also noteworthy. In this context, an MAE of 15 to 17 (on a 50-point scale) suggests that the difference

between any given ranking and the true ranking will be, on average, approximately one third of the scale.

S4.1 Data Collection and Ethics

The human-coded data used in this section was collected in accordance with the American Political

Science Association’s standards for professional ethics and principles for human subjects research. Data

6In addition to passing the three screening questions, workers were required to be over age 18, located in the United States,
and have at least a 95% approval record on more than fifty completed MTurk tasks.
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collection and handling protocols were approved by an Institutional Review Board. The data collection

task was programmed in Qualtrics and distributed to workers recruited through Amazon’s Mechanical Turk

crowdsourcing platform. Respondents are all Americans aged 18 years or older. Vulnerable populations (e.g.

prisoners, respondents with a direct-dependency relationship with the researchers, decisionally impaired

individuals, etc.) were unlikely to be included as respondents.

Prior to beginning the study, all respondents were informed of potential risks (consequences of breach of

confidentiality) in a process of informed consent. They were also informed that they had the right to refuse

the study, opt out of the study at any time, or withdraw their data after completing the survey. The task was

approximately two minutes in length. Workers were paid $0.35 for the task, making worker compensation

similar to what they could expect to earn for an equivalent amount of work at a minimum-wage job in most

US cities.

The data set contains no personal identifiers. A randomly generated identifier with no relation to actual

identifiers was generated by the Qualtrics software and used to connect each completed survey response to

the Worker ID (a random alphanumeric string assigned by Amazon) of the individual who completed it. No

demographic data was collected, so deductive disclosure was not possible.

S5 Cross-National Polarization Application

S5.1 Selecting Number of Clusters

As noted in the main text, one challenge in using clustering methods is the need to specify the number of

clusters nk. Although Figure 6 in the main text makes this selection relatively clear, I use silhouette scores

to confirm the appropriate number of clusters in each distribution. This method involves repeatedly running

the clustering algorithm with an increasingly large number of clusters. For each nk, a “silhouette score” is

then calculated. Silhouette scores use an arbitrary distance metric to determine how similar each point is

to its own cluster and how different it is from other clusters. These individual scores are then aggregated

into a value in the range [−1, 1], where -1 implies the worst possible fit and 1 implies the best possible fit.

The number of clusters which produces the maximum silhouette score is the most appropriate value for

nk. Figure S9 displays silhouette plots for each country. There is a clear maximum value for each country,

corresponding to a two-cluster specification in Germany, Italy, the United States, and the United Kingdom,

and three-cluster specifications in the Netherlands and Spain.
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Figure S9: Silhouette scores of Twitter ideology estimates for each country.

S5.2 Full Polarization Estimates

Table S4 displays the polarization estimates and associated standard errors for each country and measure

presented in the analysis of elite ideological ideal points in the main text. The estimates in Table S4

correspond to Figure 7 in the main text.

Measure

Difference Variance CPC

Germany 2.6 1.93 0.697
(0.118) (0.121) (0.023)

Italy 4.24 5.05 0.758
(0.19) (0.409) (0.021)

Netherlands 3.45 4.0 0.912
(0.184) (0.372) (0.013)

Spain 2.9 2.3 0.94
(0.088) (0.222) (0.01)

United Kingdom 6.35 9.69 0.921
(0.166) (0.775) (0.016)

United States 2.05 1.17 0.885
(0.041) (0.044) (0.01)

Table S4: Polarization Estimates and Associated Standard Errors from Analysis of Cross-National Elite
Ideal Points. Corresponds to main text Figure 7. Standard errors are in parentheses
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S6 Affective Polarization Application

S6.1 Full Polarization Estimates

Table S5 displays polarization estimates and associated standard errors for all 28 countries included in

the analysis of affective polarization in the main text. The estimates in Table S5 correspond to Figure 8 in

the main text.

Measure

Difference Variance CPC

Argentina 4.896 21.259 0.634
(0.408) (1.023) (0.032)

Australia 5.071 22.755 0.59
(0.134) (0.298) (0.009)

Austria 6.529 32.62 0.338
(0.179) (1.09) (0.02)

Bulgaria 7.606 38.626 0.806
(0.559) (1.153) (0.014)

Canada 6.001 29.22 0.389
(0.17) (0.788) (0.021)

Czech Republic 6.753 39.153 0.546
(0.204) (0.869) (0.017)

Finland 4.953 28.304 0.396
(0.283) (0.768) (0.014)

Germany 3.759 14.621 0.471
(0.3) (0.464) (0.015)

Greece 5.323 21.915 0.656
(0.355) (0.775) (0.023)

Iceland 5.485 30.458 0.533
(0.354) (0.802) (0.016)

Ireland 5.274 27.49 0.466
(0.445) (1.046) (0.023)

Israel 4.766 27.121 0.339
(0.378) (1.025) (0.027)

Japan 4.183 17.48 0.34
(0.195) (0.527) (0.018)

Kenya 7.594 51.705 0.559
(0.367) (0.904) (0.018)

Measure

Difference Variance CPC

Montenegro 4.251 26.888 0.107
(0.318) (1.363) (0.02)

New Zealand 4.867 27.494 0.549
(0.315) (0.629) (0.013)

Norway 5.226 21.783 0.568
(0.309) (0.657) (0.016)

Peru 5.171 31.035 0.408
(0.331) (1.031) (0.019)

Poland 6.898 33.825 0.579
(0.222) (0.676) (0.016)

Portugal 7.263 37.461 0.643
(0.446) (0.792) (0.015)

Romania 6.075 30.321 0.527
(0.583) (1.07) (0.023)

Slovakia 5.5 33.528 0.515
(0.454) (1.279) (0.03)

Slovenia 6.352 37.269 0.574
(0.497) (1.867) (0.047)

South Africa 4.684 22.418 0.526
(0.602) (0.704) (0.019)

Sweden 6.326 20.73 0.498
(0.155) (0.833) (0.018)

Switzerland 6.154 34.708 0.478
(0.229) (0.619) (0.015)

United Kingdom 5.65 28.819 0.478
(0.263) (0.579) (0.015)

United States 7.065 17.651 0.579
(0.113) (0.395) (0.013)

Table S5: Affective Polarization Estimates and Associated Standard Errors. Corresponds to main text
Figure 8. Standard errors are in parentheses
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S6.2 Full Correlation Results

Table S6 displays estimated correlations between affective polarization estimates and the additional

variables discussed in the main text, along with the standard errors of those correlations. The estimates in

Table S6 correspond to Figure 9 in the main text.

Measure

Difference Variance CPC

Who in Power Makes Difference 0.043 0.013 0.022
(0.028) (0.013) (0.022)

Vote Makes Difference 0.018 -0.208 0.402
(0.022) (0.014) (0.022)

Very Close to Party -0.175 -0.364 0.126
(0.039) (0.025) (0.018)

Ideological Extremity 0.491 0.598 0.399
(0.026) (0.016) (0.037)

Table S6: Correlates of Affective Polarization. Corresponds to main text Figure 9. Standard errors are in
parentheses

S6.3 Weight of Features on CPC Estimates

Some of the simulation results presented in the main text and in section S3 suggest that the CPC may be

more heavily influenced by one feature than the other, depending on the relative levels of each. To evaluate

the relative weight of each feature on CPC estimates, I randomly vary each feature across a range of values

that might be seen in real-world data, using the party affect data from above to define this plausible range

of values.

To do so, I take data from three countries—Montenegro (lowest estimated polarization), Bulgaria (highest

estimated polarization), and Ireland (approximate midpoint between Montenegro’s and Bulgaria’s polariza-

tion levels)—and calculate BSS and WSS separately for each. Using each estimate of BSS and WSS (low,

medium, and high), I then take 1,000 independent draws from U(BSS
2 , 3BSS

2 ) and U(BWSS
2 , 3WSS

2 ). This

exercise therefore allows me to randomly vary each feature simultaneously over a range of plausible values

(something I could not do in the simulations above), while still ensuring that each feature varies independent

of the other—an important attribute for determining the relative weight of each feature on the CPC, which

is calculated from these two values.

I begin with descriptive evidence in Figure S10, which plots the value of each feature against the CPC

value they combine to produce. As expected, the CPC increases as BSS increases and decreases as WSS

S22



Supplementary Information A Group-Based Approach to Measuring Polarization

increases. The relationship between each feature and the CPC appears more linear than in some of the

simulations above, but there does appear to be some evidence of diminishing returns to BSS at high levels

of polarization and to WSS at low levels of polarization, consistent with simulation results.
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Figure S10: Changes in CPC Estimates with Independent Changes in Individual Features. Values of features
unit-normalized to enable comparison.

More important, though, is to understand the ceteris paribus effect of each feature on the CPC. To

investigate this, I fit OLS models of CPC estimates on BSS and WSS. Table S7 presents the results of

these models. The coefficient magnitudes on BSS and WSS are very similar in all three models, giving

some reassurance that the CPC is not being overwhelmingly driven by one feature more than the other.

However, the faint diminishing returns observed in Figure S10 also show up in these results. The absolute

magnitude of the WSS coefficient is greater than that of the BSS coeffiicient in cases of low and mid-range

polarization. But when the overall level of polarization is high, that relationship flips, and the absolute

magnitude of the BSS coefficient is greater than that of the WSS coefficient.
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Dependent variable:

CPC
Low Polarization Medium Polarization High Polarization

(1) (2) (3)

BSS 0.035∗ 0.071∗ 0.050∗

(0.0004) (0.0004) (0.0004)

WSS −0.037∗ −0.074∗ −0.045∗

(0.0004) (0.0004) (0.0004)

Constant 0.141∗ 0.441∗ 0.801∗

(0.0004) (0.0004) (0.0004)

Observations 1,000 1,000 1,000
R2 0.950 0.981 0.959
Adjusted R2 0.950 0.981 0.959
Residual Std. Error (df = 997) 0.012 0.014 0.014
F Statistic (df = 2; 997) 9,493.926∗ 26,295.530∗ 11,672.950∗

Note: ∗p<0.05

Table S7: Effect of Individual Features on CPC Estimates. BSS and WSS unit-normalized. Standard
errors in parentheses.

These diminishing returns and their dependence on overall polarization can be seen more clearly in the

added-variable plots in Figure S11. These plots use the models from Table S7 to assess the impact of each

feature on the CPC while holding the other feature constant. Plots are separated into pairs according to

low-, medium-, and high-polarization contexts. Within each pair of plots, the facet on the left displays the

effect of BSS on the CPC, given WSS. The facet on the right displays the effect of WSS on the CPC,

given BSS. Figure S11, plot (b) shows an approximately linear effect for both BSS and WSS on the CPC

at a medium level of polarization. Just to the left, in Figure S11, plot (a), this linear effect appears again in

the case of BSS, but WSS displays a diminishing effect, suggesting that BSS carries greater weight in the

calculation of the CPC when the overall level of polarization is low. The opposite is true in Figure S11, plot

(c), which reveals a linear effect of WSS on the CPC, but a diminishing effect of BSS, suggesting that the

former carries greater weight when the overall level of polarization is high. However, in neither case does

this diminishing effect appear to be substantial.

S24



Supplementary Information A Group-Based Approach to Measuring Polarization

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

05
0.

00
0.

05
0.

10

BSS | others

C
P

C

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

05
0.

00
0.

05
0.

10

WSS | others

C
P

C

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

BSS | others

C
P

C

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

WSS | others

C
P

C

(a) Low Polarization (b) Medium Polarization

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

10
−

0.
05

0.
00

0.
05

BSS | others

C
P

C

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

WSS | others

C
P

C

(c) High Polarization

Figure S11: Added-Variable Plots of Polarization Features and CPC Estimates. Values of features unit-
normalized to enable comparison.

Taking into account all results presented in this section and in the simulations, the preponderance of

evidence points toward three conclusions: First, each feature contributes approximately equally to CPC

estimates, at least over a range of values observed in real-world data. Second, BSS may contribute more

heavily in cases of low polarization, but this difference is not substantial. Third, WSS may contribute more

heavily in cases of high polarization, but this difference is, again, not substantial.
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