Retrieves PolarCAP data for defined countries and years. Returns data in wide format. For tidy
format, use melt.PolarCAP()
.
Usage
get.PolarCAP(
countries = NA,
years = NA,
type = c("ideology", "affect"),
value.only = FALSE,
include.se = FALSE
)
Arguments
- countries
a character vector of countries to be retrieved. See Details.
- years
a numeric vector of years to be retrieved.
- type
a character vector indicating which polarization estimates should be returned. Must be
"ideology"
,"affect"
, or both.- value.only
a logical indicating whether
get.PolarCAP()
should return a data frame of results (FALSE
, the default) or a single estimate as a scalar (TRUE
).- include.se
a logical indicating whether standard errors should be returned. Defaults to
FALSE
.
Value
If value.only = FALSE
, get.PolarCAP()
returns a data frame with columns
corresponding to country names, country ISO3 codes, years, polarization estimates for the
polarization type(s) given in type
, and associated standard errors (if
include.se = TRUE
). If value.only = TRUE
, get.PolarCAP()
returns a scalar
polarization estimate for the polarization type given in type
.
Details
Ideally, country names passed to countries
would be ISO 3166-1 alpha-3 country codes
(case-insensitive). However, get.PolarCAP()
will accept country names in almost any language or
format and attempt to convert them to ISO3 codes by calling to.ISO3()
.
get.PolarCAP()
will alert the user to any country names still unrecognized after this
conversion and return results only for those which are recognized.
Examples
get.PolarCAP("USA", c(2018, 2019), "ideology", include.se = TRUE)
#> # A tibble: 2 × 6
#> country country_code year ideology ideology_se notes
#> <chr> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 United States USA 2018 0.682 0.00970 NA
#> 2 United States USA 2019 0.761 0.0102 NA
get.PolarCAP("USA", c(2018, 2019), c("ideology", "affect"), include.se = TRUE)
#> # A tibble: 2 × 8
#> country country_code year ideology affect ideology_se affect_se notes
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 United States USA 2018 0.682 0.773 0.00970 0.0114 NA
#> 2 United States USA 2019 0.761 0.728 0.0102 0.0118 NA
countries <- rep(c("MEX", "USA"), each = 2)
years <- rep(c(2018, 2019), 2)
data <- as.data.frame(cbind(countries, years))
data$ideology1 <- apply(data, 1, function(x) get.PolarCAP(x[1], x[2], type = "ideology",
value.only = TRUE))
data
#> countries years ideology1
#> 1 MEX 2018 0.6114545
#> 2 MEX 2019 0.6389439
#> 3 USA 2018 0.6819618
#> 4 USA 2019 0.7611854