Retrieves PolarCAP data for defined countries and years. Returns data in wide format. For tidy
format, use melt.PolarCAP().
Usage
get.PolarCAP(
  countries = NA,
  years = NA,
  type = c("ideology", "affect"),
  value.only = FALSE,
  include.se = FALSE
)Arguments
- countries
- a character vector of countries to be retrieved. See Details. 
- years
- a numeric vector of years to be retrieved. 
- type
- a character vector indicating which polarization estimates should be returned. Must be - "ideology",- "affect", or both.
- value.only
- a logical indicating whether - get.PolarCAP()should return a data frame of results (- FALSE, the default) or a single estimate as a scalar (- TRUE).
- include.se
- a logical indicating whether standard errors should be returned. Defaults to - FALSE.
Value
If value.only = FALSE, get.PolarCAP() returns a data frame with columns
corresponding to country names, country ISO3 codes, years, polarization estimates for the
polarization type(s) given in type, and associated standard errors (if
include.se = TRUE). If value.only = TRUE, get.PolarCAP() returns a scalar
polarization estimate for the polarization type given in type.
Details
Ideally, country names passed to countries would be ISO 3166-1 alpha-3 country codes
(case-insensitive). However, get.PolarCAP() will accept country names in almost any language or
format and attempt to convert them to ISO3 codes by calling to.ISO3().
get.PolarCAP() will alert the user to any country names still unrecognized after this
conversion and return results only for those which are recognized.
Examples
get.PolarCAP("USA", c(2018, 2019), "ideology", include.se = TRUE)
#> # A tibble: 2 × 6
#>   country       country_code  year ideology ideology_se notes
#>   <chr>         <chr>        <dbl>    <dbl>       <dbl> <chr>
#> 1 United States USA           2018    0.682     0.00970 NA   
#> 2 United States USA           2019    0.761     0.0102  NA   
get.PolarCAP("USA", c(2018, 2019), c("ideology", "affect"), include.se = TRUE)
#> # A tibble: 2 × 8
#>   country       country_code  year ideology affect ideology_se affect_se notes
#>   <chr>         <chr>        <dbl>    <dbl>  <dbl>       <dbl>     <dbl> <chr>
#> 1 United States USA           2018    0.682  0.773     0.00970    0.0114 NA   
#> 2 United States USA           2019    0.761  0.728     0.0102     0.0118 NA   
countries <- rep(c("MEX", "USA"), each = 2)
years <- rep(c(2018, 2019), 2)
data <- as.data.frame(cbind(countries, years))
data$ideology1 <- apply(data, 1, function(x) get.PolarCAP(x[1], x[2], type = "ideology",
value.only = TRUE))
data
#>   countries years ideology1
#> 1       MEX  2018 0.6114545
#> 2       MEX  2019 0.6389439
#> 3       USA  2018 0.6819618
#> 4       USA  2019 0.7611854
